Q.P. Code: 20AG0706

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Regular Examinations March-2023 SOIL AND WATER CONSERVATION ENGINEERING

(Agricultural Engineering)

	Time: 3 hours	Max. Marks: 60							
	(Answer all Five Units $5 \times 12 = 60$ Marks)								
	UNIT-I								
1	Briefly explain the each parameters of USLE.	CO2	L2	12M					
	OR								
2	a Explain the classification of gullies.	CO1	L2	6M					
	b Differentiate between u shape and v shape gullies.	CO1	L2	6M					
	UNIT-II								
3	a Explain different methods of estimation of peak rate of runoff in brief.	CO2	L2	8M					
	b Write a short note on Antecedent Moisture Condition (AMC).	CO ₂	L2	4M					
	OR								
4	a Define wind erosion.	CO1	L1	2M					
	b Write the adverse effect of wind erosion.	CO1	L2	2M					
	c Explain mechanics of wind erosion.	CO1	L2	8M					
	UNIT-III								
5	a Discuss types of bench terraces with neat diagram.	CO3	L2	8M					
	b Write the objectives and limitations of bench terraces.	CO3	L2	4M					
	OR								
6	Design a contour bund for the following specific conditions given below: The	CO3	L3	12M					
	area of the field is $1200~\text{m} \times 50~\text{m}$ having uniform slope of 3% in length wise								
	direction. The soil type is sandy loam having medium to high infiltration rates.								
	The soil cover is moderate during rainy season. The average annual rainfall of								
	the region is 850 mm and one day maximum excess rainfall for 10 years								
	recurrence interval is 900 mm. Take X=0.6 and Y = 1.5, As per soil conditions								
	(sandy loamy soil), consider 2:1 and 5:1 as upstream and downstream slopes								
	respectively.								
	UNIT-IV								
7	Explain pre and post sedimentation control methods.	CO4	L2	12M					
	OR								
8	Explain the design steps of grassed waterways.	CO4	L2	12M					
	UNIT-V								
9	Explain various water harvesting techniques.	CO5	L2	12M					
	OR								
10	Describe the design steps involved in farm pond.	CO5	L2	12M					

Rec. ...

THE STATE OF CHARGING & TECHNOLOGY:: PUTTUR

经政策系统经过三元

S. Pech III Year I Semester Regular Examinations March-2023 SOIL AND WATER CONSERVATION ENGINEERING

Acriceleural Engineering)

	Explain the design steps of grasted waterways.	